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Evaluation of cancer genomes in global context is of great interest in light of changing ethnic distribution of the
world population. We focused our study on men of African ancestry because of their disproportionately higher
rate of prostate cancer (CaP) incidence andmortality.Wepresent a systematicwhole genome analyses, revealing
alterations that differentiate AfricanAmerican (AA) and CaucasianAmerican (CA) CaP genomes.Wediscovered a
recurrent deletion on chromosome 3q13.31 centering on the LSAMP locus that was prevalent in tumors from AA
men (cumulative analyses of 435 patients: whole genome sequence, 14; FISH evaluations, 101; and SNP array,
320 patients). Notably, carriers of this deletion experienced more rapid disease progression. In contrast, PTEN
and ERG common driver alterations in CaP were significantly lower in AA prostate tumors compared to prostate
tumors from CA. Moreover, the frequency of inter-chromosomal rearrangements was significantly higher in AA
than CA tumors. These findings reveal differentially distributed somaticmutations in CaP across ancestral groups,
which have implications for precision medicine strategies.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Men of African ancestry have a significantly higher rate of prostate
cancer (CaP) incidence and mortality in the United States and globally
(Siegel et al., 2015). Accumulating evidence from our group and others
support the contention that biological and genetic alterations differ in
prevalence between AA and CA CaP (Chornokur et al., 2011; Farrell
et al., 2013; Martin et al., 2013; Pomerantz and Freedman, 2011;
Powell et al., 2010). Recently, many tumor sequencing studies have
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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highlighted frequent alterations of ERG, PTEN and SPOP genes in early
stages of CaP (Baca et al., 2013; Barbieri et al., 2012; Berger et al.,
2011; Boutros et al., 2015; Grasso et al., 2012; Kumar et al., 2011;
Taylor et al., 2010; Weischenfeldt et al., 2013) and of the androgen re-
ceptor (AR), p53 and PIK3CB and other genes inmetastatic CaP or castra-
tion resistant prostate cancer (Robinson et al., 2015). However, the
majority of these studies were performed in men of European ancestry.
Motivated by the observation that the well-described TMPRSS2-ERG
gene fusion significantly differs across ancestral populations (Blattner
et al., 2014; Farrell et al., 2014; Khani et al., 2014; Magi-Galluzzi et al.,
2011; Rosen et al., 2012) we sought to perform comprehensive whole
genome analyses of prostate cancers from AA and CA men.

2. Materials & methods

2.1. Prostate cancer specimens, sample preparation and quality control

Prostate cancer samples selected for this study were archived speci-
mens under IRB approved protocol from patients undergoing radical
prostatectomy treatment at the Walter Reed National Military Medical
Center (WRNMMC). Clinically localized primary prostate tumors were
selected for whole genome sequencing from seven African American
(AA) and seven Caucasian American (CA) patients. Histologically defined
tumors with primary Gleason pattern 3 were manually dissected under
microscope from frozen OCT-embedded 6 μm prostate tissue sections
with 80–95% tumor cell content (Table 1a). Hematoxylin and Eosin
(H&E)-stained tissue sections were reviewed by I.A.S. to determine
Gleason score and percentage composition of tumor at the site selected
for DNA extraction. DNA was purified from the isolated tissues, as well
as from peripheral blood lymphocytes (normal DNA control) of the
corresponding patients using DNeasy Blood and Tissue DNA isolation
kit (Qiagen). DNA samples were subjected to extensive quality control
to verify structural integrity by agarose gel-electophoresis. ERG fusion
and expression status were determined by RT-PCR (Supplementary
Fig. 1.) and by immunohistochemistry (Furusato et al., 2010; Hu et al.,
2008).

2.2. Validation of TMPRSS2-ERG fusion status by RT-PCR

TMPRSS2-ERG fusion positive cases were validated by RT-PCR. Ap-
proximately 40 ng of patient mRNA were reverse transcribed using
Sensiscript (Qiagen, Germantown, MD) in the presence of random
hexamer primers at 37 °C for 1 h. An additional reactionwithout reverse
transcriptase was set up as control. PCR amplification was performed
with 1.5 μl (0.5–1 μg) of cDNA from the reverse transcriptase reaction,
TMPRSS2 and ERG primers as described in Supplementary Table 1
Table 1a
Patient-specific features included in the study (patient number: GP02-18; Race: African Ameri

Summary of information on patient and tumor

Patient-specific features Specific

Sample
ID

Race Age Pathologic Gleason
score

Pathologic
stage

Serum PSA
(ng/ml)

TMPRSS
Status

GP02 AA 68 7 (4 + 3) T3C 7 −
GP04 AA 51 7 (3 + 4) T3A 8.3 −
GP10 AA 53 7 (3 + 4) T3C 6.5 −
GP18 AA 48 7 (3 + 4) T3A 3.7 −
GP12 AA 52 6 (3 + 3) TX 3.8 +
GP13 AA 59 6 (3 + 3) T2C 7.7 +
GP15 AA 44 6 (3 + 3) TX 9.1 +
GP06 CA 58 7 (4 + 3) T3C 7.4 −
GP11 CA 64 7 (3 + 4) T2C 11.6 −
GP16 CA 49 7 (4 + 3) T3A 22.7 −
GP01 CA 64 7 (3 + 4) T3B 11.4 +
GP07 CA 69 6 (3 + 3) TX 4 +
GP09 CA 60 6 (3 + 3) TX 2.8 +
GP17 CA 67 7 (3 + 4) T3A 7.4 +
using AmpliTaq Gold (Life technologies, Grand Island, NY) as recom-
mended by the manufacturer. DNA was first melted at 94 °C for 5 min,
followed by 40 amplification cycles (melting at 94 °C, 40 s; annealing
at 55 °C, 40 s; and extension at 72 °C, 1 min) and a final extension at
72 °C for 5 min. PCR products were resolved by electrophoresis on a
2% TBE-agarose gel (Supplementary Fig. 1).

2.3. Whole genome sequencing

DNA samples were processed using the Illumina TruSeq DNA PCR-
Free Sample Preparation kit, starting with 500 ng input and resulting
in an average insert size of 310 bp. Cluster amplification, linearization,
blocking and hybridization to the Read 1 sequencing primer were car-
ried out on a cBOT. Following the first sequencing read, flow cells
were held in situ, and clusters were prepared for Read2 sequencing
using the Illumina Paired-End Module. Paired-end sequence reads of
101 bases were generated using the Genome Analyzer IIX with v5 SBS
reagent kits, as described in the Illumina Genome Analyzer operating
manual. Data were processed using Real Time Analysis (RTA).

2.4. Processing pipeline for analyses of whole genome sequence data

Germline samples were sequenced to at least 30× depth followed by
alignment and variant calling using the ELANDv2e algorithm in Consen-
sus Assessment of Sequence And VAriation (CASAVA v 1.8) pipeline.
DNA derived from tumors was sequenced to at least 30-fold haploid cov-
erage. After alignment to reference genome Genome Reference Consor-
tium Human Build 37 (GRCh37/hg19) and subtraction of the germline
genome from tumor sequences, somatic variants were called using
Strelka (for single nucleotide variants [SNVs] and Indels), Genomatix
Mapper (www.genomatix.de) and BreakDancer (for structural variations
[SVs]) (Chen et al., 2009), cn.MOPs (Klambauer et al., 2012) and Control-
FREEC (Boeva et al., 2012) (for copy number variations [CNVs]). Somatic
SNVs (one base-pair point mutations detected by single reads) initially
called using Strelka (Saunders et al., 2012) (Supplementary Table 2)
were validated using four other variant calling tools: Varscan2 (Koboldt
et al., 2012), MuTect (Cibulskis et al., 2013; Roth et al., 2012) and Somatic
Sniper (Larson et al., 2012) (Supplementary Table 3). SNVs that were de-
tected by at least three variant calling tools were designated as high con-
fidence SNVs (Wang et al., 2013) (Supplementary Table 4). SNVs that
resulted inmissensemutations, nonsensemutations (stop gain) andmu-
tations affecting splice sites are presented in Supplementary Table 5.
Indels, defined as small insertion and deletions of up to 300 bps, detected
by single reads that were called by Strelka are listed in Supplementary
Table 6. Somatic SVs, defined as large deletions, inversions, insertions,
translocations detected by anomalous paired-end reads, were called by
can: AA, Caucasian American: CA; prostate specific antigen: PSA).

features of the sequenced tumors

2-ERG Tumor Gleason
score

Gleason 3 pattern of tumor
(%)

Estimated tumor purity
(%)

6 (3 + 3) 100 80
7 (3 + 4) 95 80
7 (3 + 4) 95 90
6 (3 + 3) 100 80
6 (3 + 3) 100 90
7 (3 + 4) 100 85
6 (3 + 3) 92 80
7 (3 + 4) 100 95
6 (3 + 3) 95 90
7 (3 + 4) 85 90
7 (3 + 4) 95 80
6 (3 + 3) 100 90
7 (3 + 4) 97 80
7 (3 + 4) 95 80



Table 1b
Characteristics of the analyzed prostate tumor and matched normal blood whole genomes.

Characteristics of the analyzed prostate tumor and matched normal blood whole genomes

Sample
ID

Race TMPRSS2-ERG
status

Tumor bases
sequenced (Gb)

Tumor
haploid
coverage

Normal bases
sequenced (Gb)

Normal
haploid
coverage

All
somatic
SNVs

Non-silent
SNVs

Mutation
(SNV) rate per
Mb

All
somatic
indels

All
somatic
SVs

All
somatic
CNVs

GP02 AA - 114.7 37.8 112.2 95.6 2331 25 0.82 528 284 31
GP04 AA - 116.7 38.3 111.8 95.6 2800 25 0.98 701 429 40
GP10 AA - 118.5 39.2 111.6 95.7 2570 23 0.90 602 242 5
GP18 AA - 116.2 38.6 102.4 95.7 1976 20 0.69 431 251 7
GP12 AA + 112.6 37.2 117.7 95.6 2069 8 0.72 452 286 15
GP13 AA + 107.6 34.9 113.4 95.3 1934 13 0.68 435 164 4
GP15 AA + 114.2 38.1 108.1 95.6 2167 12 0.76 455 399 6
GP06 CA - 123.5 41.0 113.3 95.8 3635 38 1.27 667 148 36
GP11 CA - 107.5 35.0 109.8 95.4 2158 19 0.75 382 130 9
GP16 CA - 108.6 36.0 115.3 95.4 2939 26 1.03 677 240 43
GP01 CA + 117.5 39.0 104.0 95.7 6652 38 2.33 1105 187 10
GP07 CA + 106.5 34.9 121.9 95.4 2113 16 0.74 359 102 4
GP09 CA + 111.9 37.2 105.3 95.5 2907 15 1.02 511 165 17
GP17 CA + 111.3 36.6 112.2 95.6 3238 35 1.13 551 186 16

Mean 113.4 37.4 111.4 95.6 2821 22 1.00 561 230 17
Total 1587.3 523.8 1559.0 1337.9 39489 313 13.82 7856 3213 243
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Genomatix Mapper and BreakDancer (www.genomatix.de). Genes with
intergenic breakpoints, inversion and deletions that were called are pre-
sented in Supplementary Table 7. Structural variation breakpoints for
ERG, LSAMP and PTEN that were detected by whole genome sequencing
are tabulated in Supplementary Table 8. A subset of base-pair mutations
and rearrangements were validated using Sanger sequencing (Supple-
mentary Fig. 2) in order to assess the specificity of the detection
algorithms (primers used are listed in Supplementary Table 1).

2.5. Detection of transcripts from ZBTB20 and LSAMP promoters by 5′ RACE

mRNA transcripts initiating from ZBTB20 and LSAMP promoterswere
detected by 5′-rapid amplification of cDNA ends (RACE) (Harvey and
Fig. 1. Similarities and differences in the landscape of primary prostate cancer genomic alteratio
are also found at higher frequencies in the TCGA prostate cancer mutation dataset (highlighte
variations (SV) and copy number variations (CNV) identified in AA or in CA genomes or in bot
Darlison, 1991; Shi and Kaminskyj, 2000) using the SMARTer® RACE
5′/3′ kit (Clontech). In a coupled reaction, 10 ng of total RNA from pa-
tients reverse transcribed in the presence SMARTer IIA oligo into first-
strand cDNA incorporated with the SMARTer sequence at the 5′ end.
The first-strand cDNA is amplified in the presence of the universal primer
and gene specific 5′ primers using two cycles of 94 °C for 30 s and 68 °C
for 3 min followed by 28 cycles of 94 °C for 30 s, 68 °C for 30 s and
72 °C for 3 min. The absence of distinct bands prompted another round
of amplification using nested primers (primers are listed in Supplementa-
ry Table 1). Amplified DNA products were analyzed by using a 2100
Bioanalyzer (Agilent) DNA prior to separation on agarose gel. Distinct
bands were excised (10 for GP02 and 18 for GP10), gel purified,
subcloned into pC-Blunt II-TOPO plasmids and transformed into One
ns between AA and CAmen. (a) Mutations identified in AA and CA genomes in this study
d in red). (b) Affected loci or cytogenetic band (cb) of high confidence somatic structural
h ethnic group. Asterisk marks previously published somatic alterations.
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Shot TOP10 E. coli (Life Technologies). Six colonies from each transfor-
mation were picked for the isolation of plasmid DNA and analyzed by
Sanger sequencing. The types of splice variants and how frequently
each was detected are described in Supplementary Fig. 3.

2.6. Principal component analysis (PCA)

The ancestry of patients for the CPDR cohort of seven AA and seven CA
patients together with the patients from The Cancer Genome Atlas
(TCGA) (The Cancer Genome Atlas Research Network et al., 2013) were
confirmed by principal component analysis using the EIGENSTRATmeth-
od from the EIGENSOFT package (Price et al., 2006). For the PCA of the 14
patients assessed by whole genome sequencing, 39,867 SNP markers
were extracted from whole genome sequencing data, SNPs with less
than 20× coverage were filtered out and the genotypes are inferred
from alternate allele frequency (0 ~ 0.2: ref./ref.; 0.2 ~ 0.8: ref./alt;
0.8 ~ 1: alt/alt). By applying the sampling criteria to filter out SNPs with
batch difference, total of 1353 SNPs were selected. The principal compo-
nents were computed from a combinedmatrix of these 1353 SNPs geno-
type derived from the WGS data of the 7AA and 7CA samples and from
the SNP array data from 415 HapMap Phase II reference samples
representing three distinct reference populations: Northern andWestern
European ancestry (CEU), Africans of Yoruba ancestry in Ibadan, Nigeria
(YRI), and Americans of African ancestry in Southwest of the United
Fig. 2. Significantly higher number of inter-chromosomal rearrangements and exclusive ass
(a) Circos plots of AA and CAwhole genomes indicate chromoplexy characteristic of prostate c
somal rearrangements aremarked by green. (b) Inter-chromosomal translocations are significan
rearrangements by large deletion (patientGP04), small deletion (GP2) or byduplication generat
Sanger sequencing of the genomic fusion junction.
States (ASW).The computed ancestry of the seven AA and seven CA pa-
tients are shown to localize with ASW/YRI and with CEU populations, re-
spectively, confirming identical classification to self-reported ethnicity
(Supplementary Fig. 4).

The ancestry the TCGA cohort were established by using a CNV
(SNP) array dataset (broad.mit.edu_PRAD.Genome_Wide_SNP_6.
Level_3.184.2019.0) that contains genotype data determined by using
the Affymetrix Genome-WideHuman SNP Array 6.0. The principal com-
ponents used to determine the ancestry of this cohort were computed
from a combined matrix consisting of 13,541 SNPs or genotypes of
320 TCGA “cases” and 552 HapMap Phase II “controls” representing
four reference populations (Han Chinese in Beijing, China [CHB] in addi-
tion to CEU, YRI and ASW). The 13541 SNPs were filtered from a total of
39,867 SNPs based on having an observedminor allele frequency great-
er than 0.05, a significant diversity among reference populations (Krusal
Wallis test p b 0.05 after Bonferroni correction), and no significant batch
difference for the allele frequency between TCGA samples and HapMap
Phase II samples. EIGENSTRATwas used to calculate the first two princi-
pal components corresponding to the two largest eigenvalues. TCGA
cases that show similar principal scores to the control HapMap samples
were assigned to the same population as that of the HapMap samples
from the same cluster. This stratified the TCGA cases into 41 African
Americans and 279 Caucasian Americans (Supplementary Fig. 5 and
Supplementary Table 9).
ociation of chromosome LSAMP deletion/rearrangement in prostate cancer of AA men.
ancer genomes. Inter-chromosomal translocations are marked with purple. Inter-chromo-
tlymore frequent events in AA prostate cancer genomes. (c)Wild type (WT), LSAMP locus
ing a ZBTB20-LSAMP gene fusion (GP10). (d) Confirmation of ZBTB20-LSAMP gene fusion by
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2.7. Frequency of LSAMP and PTEN deletions and TMPRSS2-ERG fusion in
the TCGA SNP array data

The TCGA cohort with established ancestry provides an independent
patient cohort to assess the frequency of LSAMP and PTEN deletions and
TMPRSS2-ERG alterations in prostate adenocarcinoma (PRAD). To deter-
mine the deletions or copy number changes within LSAMP (3q13.31),
PTEN and TMPRSS2-ERG loci, raw SNP data were first normalized using
the CRMA v2 method from the AROMA package (Bengtsson et al.,
2009). Integer copy number inference was performed with the ASCAT
software suite (Van Loo et al., 2012). Copy numbers were normalized
by chromosome-wide medians before the identification of deleted loci.
Data from SNP arrays that failed to converge to an acceptable solution
were omitted from analysis.

Principal component analysis was applied from the EIGENSTRAT
package (Price et al., 2006) to establish the ancestry of patients (Supple-
mentary Fig. 5).
Fig. 3. LSAMP deletion is more prevalent in AA tumors correlating with rapid disease progressio
nomes indicate LSAMPwithin theminimumdeletion region of 3q13.31 inAA patients. PTEN and
markedon theY-axis. (b) LSAMPdeletion (red tiles) is associatedwith biochemical recurrence (B
tiles) is a rare event in AApatients. Inset shows representative images of FISH assays of hemizygo
(c) Rapid disease progression of AA patients harboring LSAMP deletion shown by the Kaplan–M
deletion (red) or without deletion (blue) is marked above the X-axis.
2.8. Validation of LSAMP and PTEN deletion frequencies by interphase FISH
assay

FISH analysis (Hopman et al., 1991) for the detection of deletions at
the PTEN (Yoshimoto et al., 2006) and ZBTB20-LSAMP locus was per-
formed onwholemounted sections and on prostate tumor tissuemicro-
arrays (TMAs) constructed from a cohort of radical prostatectomy
specimens as described in Merseburger et al. (2003). A PTEN locus-spe-
cific probe was generated by selecting a combination of clones within
the peak region of common PTEN deletions near 10q23.3. These clones
were tested in an iterative trial-and-error process to optimize signal in-
tensity and specificity, resulting in a probe matching ca. 450 kbp cover-
ing PTEN and adjacent genomic sequences (Supplementary Fig. 6a). A
control probe derived from chromosome 10-specific alpha satellite cen-
tromeric DNA, labeled with CytoGreen fluorescent dye was used for
chromosome 10 counting. A ZBTB20-LSAMP locus-specific probe was
constructed from bacterial artificial chromosome clones obtained from
n. Moreover, (a) SNP deletion frequencies in AA (red, n= 41) and CA (blue, n= 279) ge-
TMPRSS2-ERG (T2-ERG) loci aremore often deleted in CApatients. Deletion frequencies are
CR,markedbyblack dots) and is amore frequent event in AApatients. PTENdeletion (blue
us LSAMP (red) and PTEN (red) deletions relative to centromeres (green), scale bar is 2 μm.
eier biochemical recurrence free survival curves. Number of AA patients in BCR curveswith



Table 2a
PTEN deletion status evaluated by FISH assay.

Race

PTEN status

p-ValueNo deletion Deletion

AA, N = 40 35 (88%) 6 (15%)
1E-06CA, N = 59 22 (37%) 37 (63%)
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a commercial vendor (Life Technologies, Carlsbad, CA, USA). Clones
were cultured in LB medium prior to DNA isolation using standard pro-
cedures and labeling with CytoOrange fluorescent dye. Clone combina-
tions were selected in the core deleted region and tested in an iterative
trial-and-error process to optimize signal intensity and specificity,
resulting in a probematching ca. 500 kbp of genomic sequence between
the ZBTB20 and LSAMP loci, including the completeGAP43 gene (Supple-
mentary Fig. 6b). A second, LSAMP-centered probe was designed using
the same process, resulting in a probe containing ca. 600 kbp of genomic
sequence centered on and covering the entire LSAMP gene (Supplemen-
tary Fig. 6c). A probe derived from chromosome 3-specific alpha satel-
lite centromeric DNA, labeled with CytoGreen fluorescent dye was
used as a control. Before use on tissue samples, locus-specific and con-
trol probes were mapped to normal human peripheral blood lympho-
cyte metaphases to confirm location and performance in interphase
nuclei. Tumor cells with at least two centromeres were counted. Num-
bers of centromeres and LSAMP/PTEN signals were compared to deter-
mine whether cells were homozygous or heterozygous for this locus.
Deletions were called when more than 75% of evaluable tumor cells
showed loss of allele. Focal deletions were called when more than 25%
of evaluable tumor cells showed loss of allele or when more than 50%
evaluable tumor cells in each gland of a cluster of two or three tumor
glands showed loss of allele. Benign prostatic glands and stroma served
as built in control.

3. Results

3.1. Tumor and whole genome sequencing data of African American and
Caucasian American prostate cancer patients

We focused this study on early stage CaP (Gleason score 6 or 7 with
primary pattern, 3) because it represents themajority of newly diagnosed
prostate cancers in the United States (Siegel et al., 2015). We evaluated
histologically defined manually dissected tumor specimens (80–95%
tumor purity, primary Gleason pattern 3) and matched normal prostate
tissue or peripheral blood lymphocytes from seven AA and seven CA pa-
tients, yielding a total of 28 whole genome sequences (Table 1a). The
overall landscape of primary CaP genomic alterations (single nucleotide
variations [SNVs], structural variation [SVs], and indels) from this study
revealed similarities, as well as differences compared to previous reports
(Barbieri et al., 2012; Berger et al., 2011; Grasso et al., 2012) (Table 1b;
Fig. 1a and b; Supplementary Tables 2–8, 11).

3.2. Association of LSAMP locus rearrangements with African American
ethnicity

Among novel observations, significantly higher numbers of inter-
chromosomal rearrangements (p = 0.03) (Fig. 2a and b) and exclusive
Table 2b
PTEN deletion frequencies by worst Gleason sum.

Gleason
Sum

AA (N = 40) CA (N = 52) p-Value

PTEN No
Deletion

PTEN
Deletion

PTEN No
Deletion

PTEN
Deletion

6 or less 14 (93%) 1 (7%) 9 (47%) 10 (53%) 0.004
7 11 (73%) 4 (27%) 7 (33%) 14 (67%) 0.02
8 to 10 7 (70%) 3 (30%) 4 (33%) 8 (67%) 0.09
association of chromosome3q13.31 locus rearrangement/deletionwere
identified in AA CaP genomes (Fig. 1b). In depth analyses of the 3q13.31
region showed two tumorswith 23Mb (GP4) and 1Mb (GP2) deletions
in the ZBTB20-LSAMP region (Fig. 2c, Supplementary Table 8). In the
third case (GP10) this locus was rearranged by duplication resulting in
a novel fusion junction that was confirmed by RNA-Seq data, targeted
genomic sequencing and by 5′-RACE of the resulting fusion products
(Fig. 2d, and Supplementary Fig. 3). All of the three AA patients with
the involvement of the 3q13.31 locus showed recurrence (two bio-
chemical recurrences and one metastasis) after prostatectomy.

3.3. LSAMP deletion in prostate cancer is a hallmark of rapid disease
progression in African American men

To validate the deleted locus in CaP and its frequency difference, we
analyzed TCGA prostate cancer SNP data (The Cancer Genome Atlas
Research Network et al., 2013). Of note, LSAMP locus centered deletions
were detected in 27% (11 of 41) of AA tumors and in 13% (37 of 279) of
CA tumors (p = 0.023), strongly supporting our initial WGS observa-
tions (Fig. 3a, Supplementary Fig. 4 and Supplementary Table 9). We
further probed the deleted locus using an LSAMP -centered probe in
fluorescent in situ hybridization (FISH) assay in tissuemicroarrays com-
prising of multi sampled cores from a matched cohort of 42 AA (174
cores) and 59 CA (299 cores) patients (Fig. 3b, Supplementary Fig. 6).
Consistent with our initial result, tumors harboring LSAMP deletion
were more prevalent in AA vs. CA cases (26% vs. 7%, p = 0.007). More-
over, LSAMP deletion in AAmen correlatedwith biochemical recurrence
(BCR) and with pT3 tumors (p = 0.05) (Fig. 3c, Supplementary
Table 10).

3.4. The mutation landscape of prostate cancers of African American and
Caucasian American men

We detected 261 somatically acquired SNVs in the coding sequence
of 247 genes from 7 CA and 7 AA patients (Supplementary Table 5). A
comparison of these SNVs against COSMIC and TCGA databases as
shown in Fig. 1a, identified 43 SNVs that were previously described in
prostate and/or other cancers (Baca et al., 2013; Barbieri et al., 2012;
Forbes et al., 2015; Kandoth et al., 2013) (Supplementary Table 11).
SNVs belonging to reported recurrently mutated CaP genes included
SPOP, MED12, TP53, MLL3, ATM, CTNNB1 and PIK3CB. Additionally we
identified SNVs in genes thatwere not previously linked to prostate can-
cer (DCAF4L2, RYR3, FAT4, CNTN5 and CDH19). While the majority of
SNVs were detected in only one of 14 patients, several were detected
inmore than one patient: a distinct SNV of CEL1was detected in two pa-
tients; two separate SNVs of SPOP,MLL3, FOXN2, EYS and NOX3were de-
tected in two different patients. Interestingly, four different SNVs of
RBM26 were detected in one patient (Supplementary Table 5). Recur-
rent CaP genomic alterations such as TMPRSS2-ERG fusion, PTEN and
CHD1 deletions and SPOPmutation were confirmed (Fig. 1, Supplemen-
tary Table 5). ERG oncoprotein expression was assessed by immunohis-
tochemistry showing anticipated lower frequencies in AA (29%) in
comparison to CA (56%) cases (Farrell et al., 2013; Rosen et al., 2012).

3.5. Virtual absence of PTEN deletions in early stage prostate cancers of
African American men

Recent studies noted frequency differences in PTEN deletion be-
tween AA and CA CaP (Blattner et al., 2014; Khani et al., 2014). The vir-
tual absence of PTEN deletion observed in AA CaP whole genome
sequence data shown here was striking (Fig. 1b). To validate these ob-
servations in an independent set of samples, we probed the PTEN
locus by FISH in a tissue microarray, as described above. PTEN deletions
were notably less frequent in AA (15%) compared to CA cases (63%)
(p = 1E-06), with even larger difference seen between Gleason 6 AA
(7%) and CA (53%) tumors (p = 0.004) (Table 2a and 2b).
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4. Discussion

Emerging data from our and other groups support biological and
genetic differences between African American (AA) and Caucasian
American (CA) CaP.While reports on comprehensive evaluations of pri-
mary CaP genomes or exomes have highlighted recurrent alterations
(TMPRSS2-ERG, PTEN, SPOP and CHD1), these studies were focused on
patients with Caucasian ancestry. ERG oncogenic activation via gene fu-
sions and deletion of the PTEN tumor suppressor aremajor early tumor-
igenic driver alterations in CaP genomes (Bigner et al., 1984; Li et al.,
1997; Tomlins et al., 2005). Within the continuum of assessments of
these alterations high frequencies in CA patients and lower frequencies
in AAmenwere noted (Blattner et al., 2014; Farrell et al., 2014; Hu et al.,
2008; Khani et al., 2014; Magi-Galluzzi et al., 2011; Petrovics et al.,
2005; Rosen et al., 2012). In Asian subjects, CaP frequencies of ERG
and PTEN alterations are the lowest (Blattner et al., 2014; Mao et al.,
2010; Qi et al., 2014). The goal of this study was to delineate genomic
features of AA and CA CaP focusing on early stages of the disease
representing majority of cases at initial presentation in Western
countries.

In summary, three recurrent genomic alterations (PTEN, LSAMP re-
gion and ERG) showed distinct prevalence between AA and CA CaP. This
studydiscovered a novel deletion of LSAMP locus as a prevalent genomic
alteration in AA CaP. Notably, this alteration is associatedwith rapid dis-
ease progression. Evaluation of the minimum site of deletion in SNP
datasets of AA tumors suggests that the primary target of deletion is
the LSAMP gene. LSAMP locus inactivation by recurrent deletions has
been reported in osteosarcoma (Barøy et al., 2014; Kresse et al., 2009)
and acute myeloid leukemia (Kühn et al., 2012) and by translocation
in clear cell renal carcinoma (Chen et al., 2003) and ovarian carcinoma
(Ntougkos et al., 2005). Single nucleotide polymorphism within the
first intron of LSAMP has recently been shown to be a predictor of pros-
tate cancer-specific mortality (Huang et al., 2013). Further, alterations
of ZBTB20,GAP43 andGSK3B adjacent to LSAMP are less well understood
but are suspected to have pro-tumorigenic functions in cancer (Chen
et al., 2014; Kroon et al., 2014; Shi et al., 2011). Thus, the observed allelic
loss of LSAMP in CaP is consistentwith its tumor suppressor function re-
ported in cancer.

Currently, chromoplexy through AR-mediated DNA breaks and
faulty repair is a proposed mechanism of prostate cancer genomic rear-
rangements (Baca et al., 2013; Taylor et al., 2010). In our studywe found
significantly higher frequency of inter-chromosomal rearrangements in
AA than in CA CaPs. Whether the chromoplexy initiating mechanism or
the subsequent selection of tumor cells is different between AA and CA
men needs to be further elucidated.

Taken together, this report highlights distinct features of AA CaP ge-
nome with emphasis on new findings on recurrent deletions of the
LSAMP locus in AA CaP which associates with disease recurrence and
identifies an aggressive subset of prostate cancers. These findings have
broader implication towards the understanding of cancer genomes of
currently underrepresented populations towards the development of
ethnically informed diagnostic, prognostic marker and tailored thera-
peutic approaches.
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